Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,3-Di-C-methyl-D-allono-1,4-lactone

Nigel A. Jones,^a* Sarah F. Jenkinson,^a Louise A. Curran,^a David J. Watkin^b and George W. J. Fleet^a

^aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, England, and ^bDepartment of Chemical Crystallography, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, England Correspondence e-mail: nigel.jones@chem.ox.ac.uk

Received 20 June 2007; accepted 22 June 2007

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.002 Å; R factor = 0.024; wR factor = 0.059; data-to-parameter ratio = 9.3.

The relative configuration of the title compound, $C_8H_{14}O_6$, was firmly established by X-ray crystallographic analysis. The absolute configuration was determined by the use of 2-*C*methyl-D-ribono-1,4-lactone as the starting material. The crystal structure is stabilized by $O-H \cdots O$ hydrogen bonds, with each molecule acting as a donor and an acceptor for five hydrogen bonds.

Related literature

For related literature, see: Booth *et al.* (2007, 2007*a*, 2007*b*, 2007*c*); Görbitz (1999); Jones, Curran *et al.* (2007); Jones, Watkin *et al.* (2007); Lichtenthaler & Peters (2004); Mitchell *et al.* (2007); Hotchkiss *et al.* (2006, 2004); Soengas *et al.* (2005).

Experimental

Crystal data

 $\begin{array}{l} C_8 H_{14} O_6 \\ M_r = 206.20 \\ \text{Monoclinic, } P2_1 \\ a = 6.1387 \ (2) \\ \text{Å} \\ b = 7.4088 \ (3) \\ \text{Å} \\ c = 10.8142 \ (3) \\ \text{Å} \\ \beta = 94.996 \ (2)^\circ \end{array}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (*DENZO/SCALEPACK*; Otwinowski & Minor, 1997) $T_{min} = 0.81, T_{max} = 0.99$ $V = 489.97 (3) Å^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.12 \text{ mm}^{-1}$ T = 150 K $0.30 \times 0.20 \times 0.10 \text{ mm}$

4427 measured reflections 1185 independent reflections 1151 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.059$ S = 0.981185 reflections 127 parameters

 $\begin{array}{l} 1 \mbox{ restraint} \\ \mbox{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.22 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{min} = -0.15 \mbox{ e } \mbox{ Å}^{-3} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
O9−H4···O8 ⁱ	0.87	1.81	2.683 (2)	178
O13−H10···O9 ⁱⁱ	0.88	1.81	2.675 (2)	169
O8−H11···O13 ⁱⁱⁱ	0.83	2.05	2.762 (2)	144
$O11 - H14 \cdots O10^{iv}$	0.85	1.90	2.729 (2)	163
$O8-H11\cdots O11^{iii}$	0.83	2.27	2.954 (2)	140

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, -z + 2; (ii) -x + 2, $y - \frac{1}{2}$, -z + 2; (iii) x, y + 1, z; (iv) -x + 1, $y - \frac{1}{2}$, -z + 1.

Data collection: *COLLECT* (Nonius, 2001); cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2443).

References

- Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Booth, K. V., Jenkinson, S. F., Fleet, G. W. J. & Watkin, D. J. (2007*a*). Acta Cryst. E63, 02424–02426.
- Booth, K. V., Jenkinson, S. F., Fleet, G. J. W. & Watkin, D. J. (2007b). Acta Cryst. E63, 02427–02429.
- Booth, K. V., Jenkinson, S. F., Fleet, G. W. J. & Watkin, D. J. (2007c). Acta Cryst. E63, o2204–o2206.
- Booth, K. V., Watkin, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2007). *Acta Cryst.* E63, o1128–o1130.
- Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.
- Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315–318.
- Hotchkiss, D. J., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). *Tetrahedron Lett.* 45, 9461–9464.
- Jones, N. A., Curran, L. A., Wormald, M. R., Dwek, R. A. & Fleet, G. W. J. (2007). In preparation.
- Jones, N. A., Watkin, D. J., Curran, L. A., Jenkinson, S. F. & Fleet, G. W. J. (2007). Acta Cryst. E63, 0992–0994.
- Lichtenthaler, F. W. & Peters, S. (2004). C. R. Chim. 7, 65-90.
- Mitchell, D. A., Jones, N. A., Hunter, S. J., Cook, J. M. D., Jenkinson, S. F., Wormald, M. R., Dwek, R. A. & Fleet, G. W. J. (2007). *Tetrahedron Asymmetry*, 18. In the press.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). *Tetrahedron Lett.* 46, 5755–5759.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

supplementary materials

Acta Cryst. (2007). E63, o3415 [doi:10.1107/S1600536807030541]

2,3-Di-C-methyl-D-allono-1,4-lactone

N. A. Jones, S. F. Jenkinson, L. A. Curran, D. J. Watkin and G. W. J. Fleet

Comment

Carbohydrates are one of the most varied cheap chiral building blocks (Lichtenthaler & Peters, 2004) available. Currently, there are very limited examples of di-branched carbohydrates reported. Examples of sugars that contain two carbon branches in the literature include 2,4-dimethyl-3,4-*O*-isopropylidene-*L*-arabinono-1,5-lactone (Booth *et al.* 2007*a*) and various protected forms of 3,5-Di-*C*-methyl-mannono and glucono lactone (Booth, Watkin *et al.*, 2007; Booth *et al.*, 2007*a*,*b*,*c*).

The Kiliani ascension on ketoses and deoxy ketoses has proved a valuable route towards branched sugars (Hotchkiss *et al.* 2004;2006, Soengas *et al.*, 2005, Jones, Watkin *et al.* 2007). Branched sugars still remains a relatively unstudied class of compounds but recent biological results have indicated they could have a potential use as therapeutics (Mitchell *et al.* 2007).

The crystal structure of the title compound (Fig. 1) exists as a three-dimensionally hydrogen bonded lattice with each molecule acting as a donor and an acceptor for 5 hydrogen bonds. One of the hydrogen bonds, from O8—H11, is bifurcated (Fig. 2).

Experimental

Treatment of 1-deoxy-3-*C*-methyl-D-psicose **1** (see Fig. 3) (Jones, Curran *et al.* 2007) derived from 2-*C*-methyl-D-ribono-1,4-lactone (Hotchkiss *et al.*, 2006), with sodium cyanide, gave a mixture of 2,6-anhydro derivative **2** and lactone **3** Deprotection of lactone **3** gave an equilibrium of 1,5-lactone **4** and 1,4-lactone **5** in which 2,3-*C*-dimethyl-D-allono-lactone exists as 2,3-*C*-dimethyl-D-allono-1,4-lactone **5** in the crystalline state. X-Ray crystallographic analysis shows that the structure is the title compound **5** removing ambiguities as to the stereochemistry at the new C-2 chiral centre. The title compound was crystallized from a mixture of cyclohexane and ethyl acetate; m.p. 426–428 K; $[\alpha]_D^{22}$ +66.8 (*c*, 0.65 in methanol).

Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned by the starting material.

The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.22) reflect changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (*DENZO/SCALEPACK*, Otwinowski & Minor, 1997).

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and U_{iso} (H) (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 2. Packing diagram showing the title compound projected along the *a*-axis.

Fig. 3. The reaction scheme.

2,3-C-Dimethyl-D-allono-1,4-lactone

Crystal data	
$C_8H_{14}O_6$	$F_{000} = 220$
$M_r = 206.20$	$D_{\rm x} = 1.398 {\rm ~Mg~m}^{-3}$
Monoclinic, P2 ₁	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 1103 reflections
a = 6.1387 (2) Å	$\theta = 5-27^{\circ}$
<i>b</i> = 7.4088 (3) Å	$\mu = 0.12 \text{ mm}^{-1}$
c = 10.8142 (3) Å	T = 150 K
$\beta = 94.996 \ (2)^{\circ}$	Plate, colourless
$V = 489.97 (3) \text{ Å}^3$	$0.30 \times 0.20 \times 0.10 \text{ mm}$
Z = 2	

Data collection

Nonius KappaCCD diffractometer	1151 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.022$
T = 150 K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 5.5^{\circ}$
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997)	$h = -7 \rightarrow 7$
$T_{\min} = 0.81, T_{\max} = 0.99$	$k = -9 \rightarrow 8$

supplementary materials

4427 measured reflections 1185 independent reflections $l = -14 \rightarrow 13$

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.059$

S = 0.98

1185 reflections

127 parameters

1 restraint

Primary atom site location: structure-invariant direct methods

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained $w = 1/[\sigma^2(F^2) + 0.11P],$ where $P = [\max(F_o^2, 0) + 2F_c^2]/3$ $(\Delta/\sigma)_{max} = 0.0003$ $\Delta\rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

Extinction correction: None

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.8416 (2)	0.4263 (2)	0.78654 (13)	0.0150
C2	0.7563 (2)	0.3296 (2)	0.66461 (13)	0.0162
C3	0.6629 (2)	0.4883 (2)	0.58761 (13)	0.0167
O4	0.60598 (17)	0.62177 (17)	0.66215 (9)	0.0191
C5	0.6621 (2)	0.5717 (2)	0.79221 (12)	0.0142
C6	0.7150 (2)	0.7452 (2)	0.86458 (13)	0.0167
C7	0.5125 (2)	0.8654 (2)	0.86070 (13)	0.0183
08	0.55256 (18)	1.02775 (17)	0.92964 (10)	0.0217
09	0.79185 (17)	0.69964 (18)	0.98862 (9)	0.0202
O10	0.63373 (19)	0.49872 (19)	0.47585 (9)	0.0248
011	0.57031 (17)	0.22808 (17)	0.69455 (9)	0.0201
C12	0.9154 (3)	0.2152 (3)	0.60015 (15)	0.0271
013	0.83413 (16)	0.30793 (17)	0.88832 (9)	0.0184
C14	1.0685 (2)	0.5052 (2)	0.77945 (14)	0.0213
H51	0.5313	0.5108	0.8209	0.0186*
H61	0.8324	0.8105	0.8255	0.0186*
H71	0.4019	0.7962	0.9000	0.0210*
H72	0.4647	0.8908	0.7734	0.0213*
H121	0.8351	0.1608	0.5271	0.0417*
H122	0.9737	0.1226	0.6570	0.0412*
H123	1.0318	0.2899	0.5717	0.0413*
H141	1.1107	0.5686	0.8566	0.0333*
H142	1.1713	0.4101	0.7692	0.0338*
H143	1.0615	0.5863	0.7091	0.0340*
H4	0.6813	0.6440	1.0171	0.0323*
H10	0.9644	0.2852	0.9245	0.0307*

supplementary materials

H11	0.6169	1.0978	0.8849	0.0359*
H14	0.5063	0.1748	0.6320	0.0313*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0152 (6)	0.0146 (7)	0.0149 (6)	0.0006 (6)	0.0000 (5)	0.0030 (5)
C2	0.0178 (7)	0.0149 (7)	0.0159 (6)	0.0015 (6)	0.0015 (5)	0.0011 (5)
C3	0.0181 (7)	0.0155 (7)	0.0163 (6)	-0.0009 (6)	-0.0004 (5)	0.0002 (6)
O4	0.0258 (5)	0.0159 (5)	0.0145 (5)	0.0043 (4)	-0.0041 (4)	0.0000 (4)
C5	0.0155 (6)	0.0141 (7)	0.0124 (6)	0.0003 (5)	-0.0023 (5)	0.0007 (5)
C6	0.0180 (6)	0.0155 (7)	0.0163 (6)	-0.0042 (6)	0.0004 (5)	-0.0007 (6)
C7	0.0238 (7)	0.0128 (7)	0.0181 (6)	-0.0004 (6)	0.0012 (5)	-0.0017 (6)
08	0.0309 (6)	0.0132 (5)	0.0220 (5)	-0.0040 (5)	0.0076 (4)	-0.0024 (4)
09	0.0211 (5)	0.0222 (6)	0.0162 (5)	-0.0057 (5)	-0.0046 (4)	-0.0002 (4)
O10	0.0349 (6)	0.0247 (6)	0.0141 (5)	0.0031 (5)	-0.0022 (4)	0.0021 (5)
011	0.0243 (5)	0.0180 (5)	0.0176 (5)	-0.0074 (5)	-0.0006 (4)	-0.0012 (4)
C12	0.0317 (8)	0.0262 (9)	0.0238 (7)	0.0093 (7)	0.0051 (6)	-0.0030 (7)
013	0.0171 (5)	0.0197 (5)	0.0177 (5)	-0.0014 (4)	-0.0030 (4)	0.0074 (4)
C14	0.0149 (7)	0.0248 (8)	0.0240 (7)	-0.0026 (6)	0.0003 (5)	0.0029 (7)

Geometric parameters (Å, °)

C1—C2	1.5509 (19)	С6—Н61	0.992
C1—C5	1.547 (2)	C7—O8	1.4253 (17)
C1—O13	1.4110 (17)	С7—Н71	0.977
C1—C14	1.518 (2)	С7—Н72	0.982
C2—C3	1.523 (2)	O8—H11	0.832
C2—O11	1.4277 (17)	O9—H4	0.873
C2—C12	1.509 (2)	O11—H14	0.850
C3—O4	1.3413 (18)	C12—H121	0.981
C3—O10	1.2087 (17)	С12—Н122	0.970
O4—C5	1.4663 (16)	С12—Н123	0.974
C5—C6	1.5249 (19)	O13—H10	0.876
С5—Н51	0.994	C14—H141	0.972
C6—C7	1.527 (2)	C14—H142	0.958
C6—O9	1.4232 (17)	C14—H143	0.968
C2—C1—C5	99.57 (11)	С5—С6—Н61	108.8
C2—C1—O13	110.17 (12)	С7—С6—Н61	108.9
C5—C1—O13	109.28 (11)	O9—C6—H61	108.9
C2—C1—C14	112.23 (12)	С6—С7—О8	112.03 (12)
C5—C1—C14	113.17 (13)	С6—С7—Н71	106.1
O13—C1—C14	111.78 (11)	O8—C7—H71	108.0
C1—C2—C3	101.06 (12)	С6—С7—Н72	108.2
C1—C2—O11	105.55 (10)	O8—C7—H72	111.4
C3—C2—O11	105.10 (11)	H71—C7—H72	111.0
C1—C2—C12	117.88 (13)	C7—O8—H11	106.9
C3—C2—C12	114.12 (12)	С6—О9—Н4	103.9

O11—C2—C12	111.80 (14)	C2—O11—H14	112.8
C2—C3—O4	110.23 (11)	C2-C12-H121	107.6
C2—C3—O10	127.72 (14)	C2—C12—H122	108.8
O4—C3—O10	122.01 (14)	H121—C12—H122	110.6
C3—O4—C5	109.77 (11)	C2—C12—H123	110.4
C1—C5—O4	104.29 (10)	H121—C12—H123	108.1
C1—C5—C6	119.14 (12)	H122—C12—H123	111.2
O4—C5—C6	107.52 (11)	C1	112.2
C1-C5-H51	107.1	C1-C14-H141	108.7
O4—C5—H51	106.6	C1-C14-H142	109.8
С6—С5—Н51	111.4	H141—C14—H142	108.9
С5—С6—С7	109.92 (11)	C1—C14—H143	107.5
С5—С6—О9	108.80 (11)	H141—C14—H143	111.4
C7—C6—O9	111.49 (11)	H142—C14—H143	110.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!\!- \!$
O9—H4···O8 ⁱ	0.87	1.81	2.683 (2)	178
O13—H10···O9 ⁱⁱ	0.88	1.81	2.675 (2)	169
O8—H11…O13 ⁱⁱⁱ	0.83	2.05	2.762 (2)	144
O11—H14···O10 ^{iv}	0.85	1.90	2.729 (2)	163
O8—H11···O11 ⁱⁱⁱ	0.83	2.27	2.954 (2)	140

Symmetry codes: (i) -x+1, y-1/2, -z+2; (ii) -x+2, y-1/2, -z+2; (iii) x, y+1, z; (iv) -x+1, y-1/2, -z+1.

